Whakaoti mō r
r = \frac{23}{14} = 1\frac{9}{14} \approx 1.642857143
Tohaina
Kua tāruatia ki te papatopenga
2-3r+21-7r=4\left(r-2\right)+8
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te r-7.
23-3r-7r=4\left(r-2\right)+8
Tāpirihia te 2 ki te 21, ka 23.
23-10r=4\left(r-2\right)+8
Pahekotia te -3r me -7r, ka -10r.
23-10r=4r-8+8
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te r-2.
23-10r=4r
Tāpirihia te -8 ki te 8, ka 0.
23-10r-4r=0
Tangohia te 4r mai i ngā taha e rua.
23-14r=0
Pahekotia te -10r me -4r, ka -14r.
-14r=-23
Tangohia te 23 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
r=\frac{-23}{-14}
Whakawehea ngā taha e rua ki te -14.
r=\frac{23}{14}
Ka taea te hautanga \frac{-23}{-14} te whakamāmā ki te \frac{23}{14} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}