Whakaoti mō z
z=-2i
Tohaina
Kua tāruatia ki te papatopenga
2-\left(2\times 1+2i\right)z=4i-2
Whakareatia 2 ki te 1+i.
2-\left(2+2i\right)z=4i-2
Mahia ngā whakarea i roto o 2\times 1+2i.
2+\left(-2-2i\right)z=4i-2
Whakareatia te -1 ki te 2+2i, ka -2-2i.
\left(-2-2i\right)z=4i-2-2
Tangohia te 2 mai i ngā taha e rua.
\left(-2-2i\right)z=-2-2+4i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4i-2-2.
\left(-2-2i\right)z=-4+4i
Tāpiri -2 ki te -2.
z=\frac{-4+4i}{-2-2i}
Whakawehea ngā taha e rua ki te -2-2i.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}
Me whakarea te taurunga me te tauraro o \frac{-4+4i}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{\left(-2\right)^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{8}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{-4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2i^{2}}{8}
Me whakarea ngā tau matatini -4+4i me -2+2i pēnā i te whakarea huarua.
z=\frac{-4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2\left(-1\right)}{8}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{8-8i-8i-8}{8}
Mahia ngā whakarea i roto o -4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2\left(-1\right).
z=\frac{8-8+\left(-8-8\right)i}{8}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8-8i-8i-8.
z=\frac{-16i}{8}
Mahia ngā tāpiri i roto o 8-8+\left(-8-8\right)i.
z=-2i
Whakawehea te -16i ki te 8, kia riro ko -2i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}