Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2-\left(2\times 1+2i\right)z=4i-2
Whakareatia 2 ki te 1+i.
2-\left(2+2i\right)z=4i-2
Mahia ngā whakarea i roto o 2\times 1+2i.
2+\left(-2-2i\right)z=4i-2
Whakareatia te -1 ki te 2+2i, ka -2-2i.
\left(-2-2i\right)z=4i-2-2
Tangohia te 2 mai i ngā taha e rua.
\left(-2-2i\right)z=-2-2+4i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 4i-2-2.
\left(-2-2i\right)z=-4+4i
Tāpiri -2 ki te -2.
z=\frac{-4+4i}{-2-2i}
Whakawehea ngā taha e rua ki te -2-2i.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}
Me whakarea te taurunga me te tauraro o \frac{-4+4i}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{\left(-2\right)^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-4+4i\right)\left(-2+2i\right)}{8}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{-4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2i^{2}}{8}
Me whakarea ngā tau matatini -4+4i me -2+2i pēnā i te whakarea huarua.
z=\frac{-4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2\left(-1\right)}{8}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{8-8i-8i-8}{8}
Mahia ngā whakarea i roto o -4\left(-2\right)-4\times \left(2i\right)+4i\left(-2\right)+4\times 2\left(-1\right).
z=\frac{8-8+\left(-8-8\right)i}{8}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8-8i-8i-8.
z=\frac{-16i}{8}
Mahia ngā tāpiri i roto o 8-8+\left(-8-8\right)i.
z=-2i
Whakawehea te -16i ki te 8, kia riro ko -2i.