Aromātai
-\frac{394}{3}\approx -131.333333333
Tauwehe
-\frac{394}{3} = -131\frac{1}{3} = -131.33333333333334
Tohaina
Kua tāruatia ki te papatopenga
2-125\times \frac{15+1}{15}
Whakareatia te 1 ki te 15, ka 15.
2-125\times \frac{16}{15}
Tāpirihia te 15 ki te 1, ka 16.
2-\frac{125\times 16}{15}
Tuhia te 125\times \frac{16}{15} hei hautanga kotahi.
2-\frac{2000}{15}
Whakareatia te 125 ki te 16, ka 2000.
2-\frac{400}{3}
Whakahekea te hautanga \frac{2000}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{6}{3}-\frac{400}{3}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{6-400}{3}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{400}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{394}{3}
Tangohia te 400 i te 6, ka -394.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}