Aromātai
\frac{167}{80}=2.0875
Tauwehe
\frac{167}{2 ^ {4} \cdot 5} = 2\frac{7}{80} = 2.0875
Tohaina
Kua tāruatia ki te papatopenga
2-\frac{4+3}{4}\left(\frac{1\times 5+1}{5}-\frac{1\times 4+1}{4}\right)
Whakareatia te 1 ki te 4, ka 4.
2-\frac{7}{4}\left(\frac{1\times 5+1}{5}-\frac{1\times 4+1}{4}\right)
Tāpirihia te 4 ki te 3, ka 7.
2-\frac{7}{4}\left(\frac{5+1}{5}-\frac{1\times 4+1}{4}\right)
Whakareatia te 1 ki te 5, ka 5.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{1\times 4+1}{4}\right)
Tāpirihia te 5 ki te 1, ka 6.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{4+1}{4}\right)
Whakareatia te 1 ki te 4, ka 4.
2-\frac{7}{4}\left(\frac{6}{5}-\frac{5}{4}\right)
Tāpirihia te 4 ki te 1, ka 5.
2-\frac{7}{4}\left(\frac{24}{20}-\frac{25}{20}\right)
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{6}{5} me \frac{5}{4} ki te hautau me te tautūnga 20.
2-\frac{7}{4}\times \frac{24-25}{20}
Tā te mea he rite te tauraro o \frac{24}{20} me \frac{25}{20}, me tango rāua mā te tango i ō raua taurunga.
2-\frac{7}{4}\left(-\frac{1}{20}\right)
Tangohia te 25 i te 24, ka -1.
2-\frac{7\left(-1\right)}{4\times 20}
Me whakarea te \frac{7}{4} ki te -\frac{1}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2-\frac{-7}{80}
Mahia ngā whakarea i roto i te hautanga \frac{7\left(-1\right)}{4\times 20}.
2-\left(-\frac{7}{80}\right)
Ka taea te hautanga \frac{-7}{80} te tuhi anō ko -\frac{7}{80} mā te tango i te tohu tōraro.
2+\frac{7}{80}
Ko te tauaro o -\frac{7}{80} ko \frac{7}{80}.
\frac{160}{80}+\frac{7}{80}
Me tahuri te 2 ki te hautau \frac{160}{80}.
\frac{160+7}{80}
Tā te mea he rite te tauraro o \frac{160}{80} me \frac{7}{80}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{167}{80}
Tāpirihia te 160 ki te 7, ka 167.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}