Aromātai
-\frac{7}{5}=-1.4
Tauwehe
-\frac{7}{5} = -1\frac{2}{5} = -1.4
Tohaina
Kua tāruatia ki te papatopenga
2-\left(\frac{10}{4}+\frac{3}{4}\right)-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{5}{2} me \frac{3}{4} ki te hautau me te tautūnga 4.
2-\frac{10+3}{4}-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Tā te mea he rite te tauraro o \frac{10}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\frac{13}{4}-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Tāpirihia te 10 ki te 3, ka 13.
\frac{8}{4}-\frac{13}{4}-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{8-13}{4}-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{13}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{4}-\left(1-\frac{4}{5}\right)\times \frac{3}{4}
Tangohia te 13 i te 8, ka -5.
-\frac{5}{4}-\left(\frac{5}{5}-\frac{4}{5}\right)\times \frac{3}{4}
Me tahuri te 1 ki te hautau \frac{5}{5}.
-\frac{5}{4}-\frac{5-4}{5}\times \frac{3}{4}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{4}-\frac{1}{5}\times \frac{3}{4}
Tangohia te 4 i te 5, ka 1.
-\frac{5}{4}-\frac{1\times 3}{5\times 4}
Me whakarea te \frac{1}{5} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{4}-\frac{3}{20}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{5\times 4}.
-\frac{25}{20}-\frac{3}{20}
Ko te maha noa iti rawa atu o 4 me 20 ko 20. Me tahuri -\frac{5}{4} me \frac{3}{20} ki te hautau me te tautūnga 20.
\frac{-25-3}{20}
Tā te mea he rite te tauraro o -\frac{25}{20} me \frac{3}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{-28}{20}
Tangohia te 3 i te -25, ka -28.
-\frac{7}{5}
Whakahekea te hautanga \frac{-28}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}