Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\sqrt{2x+3}=2x-1-2
Me tango 2 mai i ngā taha e rua o te whārite.
-\sqrt{2x+3}=2x-3
Tangohia te 2 i te -1, ka -3.
\left(-\sqrt{2x+3}\right)^{2}=\left(2x-3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-1\right)^{2}\left(\sqrt{2x+3}\right)^{2}=\left(2x-3\right)^{2}
Whakarohaina te \left(-\sqrt{2x+3}\right)^{2}.
1\left(\sqrt{2x+3}\right)^{2}=\left(2x-3\right)^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
1\left(2x+3\right)=\left(2x-3\right)^{2}
Tātaihia te \sqrt{2x+3} mā te pū o 2, kia riro ko 2x+3.
2x+3=\left(2x-3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 2x+3.
2x+3=4x^{2}-12x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
2x+3-4x^{2}=-12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
2x+3-4x^{2}+12x=9
Me tāpiri te 12x ki ngā taha e rua.
14x+3-4x^{2}=9
Pahekotia te 2x me 12x, ka 14x.
14x+3-4x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
14x-6-4x^{2}=0
Tangohia te 9 i te 3, ka -6.
7x-3-2x^{2}=0
Whakawehea ngā taha e rua ki te 2.
-2x^{2}+7x-3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=-2\left(-3\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=6 b=1
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-2x^{2}+6x\right)+\left(x-3\right)
Tuhia anō te -2x^{2}+7x-3 hei \left(-2x^{2}+6x\right)+\left(x-3\right).
2x\left(-x+3\right)-\left(-x+3\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(-x+3\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi -x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te -x+3=0 me te 2x-1=0.
2-\sqrt{2\times 3+3}=2\times 3-1
Whakakapia te 3 mō te x i te whārite 2-\sqrt{2x+3}=2x-1.
-1=5
Whakarūnātia. Ko te uara x=3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
2-\sqrt{2\times \frac{1}{2}+3}=2\times \frac{1}{2}-1
Whakakapia te \frac{1}{2} mō te x i te whārite 2-\sqrt{2x+3}=2x-1.
0=0
Whakarūnātia. Ko te uara x=\frac{1}{2} kua ngata te whārite.
x=\frac{1}{2}
Ko te whārite -\sqrt{2x+3}=2x-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}