Whakaoti mō x
x = \frac{31}{3} = 10\frac{1}{3} \approx 10.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
10-\left(3x-1\right)=-20
Whakareatia ngā taha e rua o te whārite ki te 5.
10-3x-\left(-1\right)=-20
Hei kimi i te tauaro o 3x-1, kimihia te tauaro o ia taurangi.
10-3x+1=-20
Ko te tauaro o -1 ko 1.
11-3x=-20
Tāpirihia te 10 ki te 1, ka 11.
-3x=-20-11
Tangohia te 11 mai i ngā taha e rua.
-3x=-31
Tangohia te 11 i te -20, ka -31.
x=\frac{-31}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{31}{3}
Ka taea te hautanga \frac{-31}{-3} te whakamāmā ki te \frac{31}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}