Aromātai
\frac{71}{40}=1.775
Tauwehe
\frac{71}{2 ^ {3} \cdot 5} = 1\frac{31}{40} = 1.775
Tohaina
Kua tāruatia ki te papatopenga
\frac{8}{4}-\frac{1}{4}-\frac{-1}{8}-\frac{1}{10}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{8-1}{4}-\frac{-1}{8}-\frac{1}{10}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{4}-\frac{-1}{8}-\frac{1}{10}
Tangohia te 1 i te 8, ka 7.
\frac{7}{4}-\left(-\frac{1}{8}\right)-\frac{1}{10}
Ka taea te hautanga \frac{-1}{8} te tuhi anō ko -\frac{1}{8} mā te tango i te tohu tōraro.
\frac{7}{4}+\frac{1}{8}-\frac{1}{10}
Ko te tauaro o -\frac{1}{8} ko \frac{1}{8}.
\frac{14}{8}+\frac{1}{8}-\frac{1}{10}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{7}{4} me \frac{1}{8} ki te hautau me te tautūnga 8.
\frac{14+1}{8}-\frac{1}{10}
Tā te mea he rite te tauraro o \frac{14}{8} me \frac{1}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15}{8}-\frac{1}{10}
Tāpirihia te 14 ki te 1, ka 15.
\frac{75}{40}-\frac{4}{40}
Ko te maha noa iti rawa atu o 8 me 10 ko 40. Me tahuri \frac{15}{8} me \frac{1}{10} ki te hautau me te tautūnga 40.
\frac{75-4}{40}
Tā te mea he rite te tauraro o \frac{75}{40} me \frac{4}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{71}{40}
Tangohia te 4 i te 75, ka 71.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}