Whakaoti mō m
m=1
Tohaina
Kua tāruatia ki te papatopenga
2-\frac{1}{3}m-\frac{1}{3}\left(-1\right)=2
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te m-1.
2-\frac{1}{3}m+\frac{1}{3}=2
Whakareatia te -\frac{1}{3} ki te -1, ka \frac{1}{3}.
\frac{6}{3}-\frac{1}{3}m+\frac{1}{3}=2
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{6+1}{3}-\frac{1}{3}m=2
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{3}-\frac{1}{3}m=2
Tāpirihia te 6 ki te 1, ka 7.
-\frac{1}{3}m=2-\frac{7}{3}
Tangohia te \frac{7}{3} mai i ngā taha e rua.
-\frac{1}{3}m=\frac{6}{3}-\frac{7}{3}
Me tahuri te 2 ki te hautau \frac{6}{3}.
-\frac{1}{3}m=\frac{6-7}{3}
Tā te mea he rite te tauraro o \frac{6}{3} me \frac{7}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{3}m=-\frac{1}{3}
Tangohia te 7 i te 6, ka -1.
m=-\frac{1}{3}\left(-3\right)
Me whakarea ngā taha e rua ki te -3, te tau utu o -\frac{1}{3}.
m=\frac{-\left(-3\right)}{3}
Tuhia te -\frac{1}{3}\left(-3\right) hei hautanga kotahi.
m=\frac{3}{3}
Whakareatia te -1 ki te -3, ka 3.
m=1
Whakawehea te 3 ki te 3, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}