Whakaoti mō m
m=\frac{1}{3}\approx 0.333333333
Tohaina
Kua tāruatia ki te papatopenga
2-\left(4m-\left(2-2m\right)\right)=2
Pahekotia te 2m me 2m, ka 4m.
2-\left(4m-2-\left(-2m\right)\right)=2
Hei kimi i te tauaro o 2-2m, kimihia te tauaro o ia taurangi.
2-\left(4m-2+2m\right)=2
Ko te tauaro o -2m ko 2m.
2-\left(6m-2\right)=2
Pahekotia te 4m me 2m, ka 6m.
2-6m-\left(-2\right)=2
Hei kimi i te tauaro o 6m-2, kimihia te tauaro o ia taurangi.
2-6m+2=2
Ko te tauaro o -2 ko 2.
4-6m=2
Tāpirihia te 2 ki te 2, ka 4.
-6m=2-4
Tangohia te 4 mai i ngā taha e rua.
-6m=-2
Tangohia te 4 i te 2, ka -2.
m=\frac{-2}{-6}
Whakawehea ngā taha e rua ki te -6.
m=\frac{1}{3}
Whakahekea te hautanga \frac{-2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}