Aromātai
-\frac{21}{5}=-4.2
Tauwehe
-\frac{21}{5} = -4\frac{1}{5} = -4.2
Tohaina
Kua tāruatia ki te papatopenga
2-\left(-\frac{4}{5}-\left(-3\right)+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Tangohia te 7 i te 4, ka -3.
2-\left(-\frac{4}{5}+3+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Ko te tauaro o -3 ko 3.
2-\left(-\frac{4}{5}+\frac{15}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Me tahuri te 3 ki te hautau \frac{15}{5}.
2-\left(\frac{-4+15}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Tā te mea he rite te tauraro o -\frac{4}{5} me \frac{15}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\left(\frac{11}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Tāpirihia te -4 ki te 15, ka 11.
2-\left(\frac{99}{45}+\frac{5}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Ko te maha noa iti rawa atu o 5 me 9 ko 45. Me tahuri \frac{11}{5} me \frac{1}{9} ki te hautau me te tautūnga 45.
2-\left(\frac{99+5}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Tā te mea he rite te tauraro o \frac{99}{45} me \frac{5}{45}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\left(\frac{104}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Tāpirihia te 99 ki te 5, ka 104.
2-\left(\frac{104}{45}-\left(\frac{10}{9}-\frac{54}{9}\right)\right)+2-1
Me tahuri te 6 ki te hautau \frac{54}{9}.
2-\left(\frac{104}{45}-\frac{10-54}{9}\right)+2-1
Tā te mea he rite te tauraro o \frac{10}{9} me \frac{54}{9}, me tango rāua mā te tango i ō raua taurunga.
2-\left(\frac{104}{45}-\left(-\frac{44}{9}\right)\right)+2-1
Tangohia te 54 i te 10, ka -44.
2-\left(\frac{104}{45}+\frac{44}{9}\right)+2-1
Ko te tauaro o -\frac{44}{9} ko \frac{44}{9}.
2-\left(\frac{104}{45}+\frac{220}{45}\right)+2-1
Ko te maha noa iti rawa atu o 45 me 9 ko 45. Me tahuri \frac{104}{45} me \frac{44}{9} ki te hautau me te tautūnga 45.
2-\frac{104+220}{45}+2-1
Tā te mea he rite te tauraro o \frac{104}{45} me \frac{220}{45}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
2-\frac{324}{45}+2-1
Tāpirihia te 104 ki te 220, ka 324.
2-\frac{36}{5}+2-1
Whakahekea te hautanga \frac{324}{45} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{10}{5}-\frac{36}{5}+2-1
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{10-36}{5}+2-1
Tā te mea he rite te tauraro o \frac{10}{5} me \frac{36}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{26}{5}+2-1
Tangohia te 36 i te 10, ka -26.
-\frac{26}{5}+\frac{10}{5}-1
Me tahuri te 2 ki te hautau \frac{10}{5}.
\frac{-26+10}{5}-1
Tā te mea he rite te tauraro o -\frac{26}{5} me \frac{10}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{16}{5}-1
Tāpirihia te -26 ki te 10, ka -16.
-\frac{16}{5}-\frac{5}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{-16-5}{5}
Tā te mea he rite te tauraro o -\frac{16}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{21}{5}
Tangohia te 5 i te -16, ka -21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}