Whakaoti mō x
x=\frac{3\left(y-10\right)}{2}
Whakaoti mō y
y=\frac{2\left(x+15\right)}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-2y+30=y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x+30=y+2y
Me tāpiri te 2y ki ngā taha e rua.
2x+30=3y
Pahekotia te y me 2y, ka 3y.
2x=3y-30
Tangohia te 30 mai i ngā taha e rua.
\frac{2x}{2}=\frac{3y-30}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{3y-30}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=\frac{3y}{2}-15
Whakawehe -30+3y ki te 2.
2x-2y+30=y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-2y+30-y=0
Tangohia te y mai i ngā taha e rua.
2x-3y+30=0
Pahekotia te -2y me -y, ka -3y.
-3y+30=-2x
Tangohia te 2x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3y=-2x-30
Tangohia te 30 mai i ngā taha e rua.
\frac{-3y}{-3}=\frac{-2x-30}{-3}
Whakawehea ngā taha e rua ki te -3.
y=\frac{-2x-30}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
y=\frac{2x}{3}+10
Whakawehe -2x-30 ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}