Whakaoti mō x
x=5
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(x^{2}-6x+9\right)+6=14
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
2x^{2}-12x+18+6=14
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-6x+9.
2x^{2}-12x+24=14
Tāpirihia te 18 ki te 6, ka 24.
2x^{2}-12x+24-14=0
Tangohia te 14 mai i ngā taha e rua.
2x^{2}-12x+10=0
Tangohia te 14 i te 24, ka 10.
x^{2}-6x+5=0
Whakawehea ngā taha e rua ki te 2.
a+b=-6 ab=1\times 5=5
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-5 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}-5x\right)+\left(-x+5\right)
Tuhia anō te x^{2}-6x+5 hei \left(x^{2}-5x\right)+\left(-x+5\right).
x\left(x-5\right)-\left(x-5\right)
Tauwehea te x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-5\right)\left(x-1\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x-1=0.
2\left(x^{2}-6x+9\right)+6=14
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
2x^{2}-12x+18+6=14
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-6x+9.
2x^{2}-12x+24=14
Tāpirihia te 18 ki te 6, ka 24.
2x^{2}-12x+24-14=0
Tangohia te 14 mai i ngā taha e rua.
2x^{2}-12x+10=0
Tangohia te 14 i te 24, ka 10.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 10}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -12 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 10}}{2\times 2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 10}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-12\right)±\sqrt{144-80}}{2\times 2}
Whakareatia -8 ki te 10.
x=\frac{-\left(-12\right)±\sqrt{64}}{2\times 2}
Tāpiri 144 ki te -80.
x=\frac{-\left(-12\right)±8}{2\times 2}
Tuhia te pūtakerua o te 64.
x=\frac{12±8}{2\times 2}
Ko te tauaro o -12 ko 12.
x=\frac{12±8}{4}
Whakareatia 2 ki te 2.
x=\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{12±8}{4} ina he tāpiri te ±. Tāpiri 12 ki te 8.
x=5
Whakawehe 20 ki te 4.
x=\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{12±8}{4} ina he tango te ±. Tango 8 mai i 12.
x=1
Whakawehe 4 ki te 4.
x=5 x=1
Kua oti te whārite te whakatau.
2\left(x^{2}-6x+9\right)+6=14
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
2x^{2}-12x+18+6=14
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x^{2}-6x+9.
2x^{2}-12x+24=14
Tāpirihia te 18 ki te 6, ka 24.
2x^{2}-12x=14-24
Tangohia te 24 mai i ngā taha e rua.
2x^{2}-12x=-10
Tangohia te 24 i te 14, ka -10.
\frac{2x^{2}-12x}{2}=-\frac{10}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{10}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-6x=-\frac{10}{2}
Whakawehe -12 ki te 2.
x^{2}-6x=-5
Whakawehe -10 ki te 2.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-5+9
Pūrua -3.
x^{2}-6x+9=4
Tāpiri -5 ki te 9.
\left(x-3\right)^{2}=4
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2 x-3=-2
Whakarūnātia.
x=5 x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}