Whakaoti mō h
h = -\frac{5}{2} = -2\frac{1}{2} = -2.5
h=1
Whakaoti mō x (complex solution)
x\in \mathrm{C}
h=-\frac{5}{2}\text{ or }h=1
Whakaoti mō x
x\in \mathrm{R}
h=1\text{ or }h=-\frac{5}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2h^{2}+3\left(x+h-x\right)=5
Pahekotia te x me -x, ka 0.
2h^{2}+3h=5
Pahekotia te x me -x, ka 0.
2h^{2}+3h-5=0
Tangohia te 5 mai i ngā taha e rua.
h=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 3 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 3.
h=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
h=\frac{-3±\sqrt{9+40}}{2\times 2}
Whakareatia -8 ki te -5.
h=\frac{-3±\sqrt{49}}{2\times 2}
Tāpiri 9 ki te 40.
h=\frac{-3±7}{2\times 2}
Tuhia te pūtakerua o te 49.
h=\frac{-3±7}{4}
Whakareatia 2 ki te 2.
h=\frac{4}{4}
Nā, me whakaoti te whārite h=\frac{-3±7}{4} ina he tāpiri te ±. Tāpiri -3 ki te 7.
h=1
Whakawehe 4 ki te 4.
h=-\frac{10}{4}
Nā, me whakaoti te whārite h=\frac{-3±7}{4} ina he tango te ±. Tango 7 mai i -3.
h=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
h=1 h=-\frac{5}{2}
Kua oti te whārite te whakatau.
2h^{2}+3\left(x+h-x\right)=5
Pahekotia te x me -x, ka 0.
2h^{2}+3h=5
Pahekotia te x me -x, ka 0.
\frac{2h^{2}+3h}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
h^{2}+\frac{3}{2}h=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
h^{2}+\frac{3}{2}h+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
h^{2}+\frac{3}{2}h+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
h^{2}+\frac{3}{2}h+\frac{9}{16}=\frac{49}{16}
Tāpiri \frac{5}{2} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(h+\frac{3}{4}\right)^{2}=\frac{49}{16}
Tauwehea h^{2}+\frac{3}{2}h+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h+\frac{3}{4}=\frac{7}{4} h+\frac{3}{4}=-\frac{7}{4}
Whakarūnātia.
h=1 h=-\frac{5}{2}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}