Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+14-5-3x=6+3\left(3-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+7.
2x+9-3x=6+3\left(3-x\right)
Tangohia te 5 i te 14, ka 9.
-x+9=6+3\left(3-x\right)
Pahekotia te 2x me -3x, ka -x.
-x+9=6+9-3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3-x.
-x+9=15-3x
Tāpirihia te 6 ki te 9, ka 15.
-x+9+3x=15
Me tāpiri te 3x ki ngā taha e rua.
2x+9=15
Pahekotia te -x me 3x, ka 2x.
2x=15-9
Tangohia te 9 mai i ngā taha e rua.
2x=6
Tangohia te 9 i te 15, ka 6.
x=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x=3
Whakawehea te 6 ki te 2, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}