Whakaoti mō n
n=4
Tohaina
Kua tāruatia ki te papatopenga
2n-10+3n-1=2\left(n+3\right)-\left(n+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te n-5.
5n-10-1=2\left(n+3\right)-\left(n+1\right)
Pahekotia te 2n me 3n, ka 5n.
5n-11=2\left(n+3\right)-\left(n+1\right)
Tangohia te 1 i te -10, ka -11.
5n-11=2n+6-\left(n+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te n+3.
5n-11=2n+6-n-1
Hei kimi i te tauaro o n+1, kimihia te tauaro o ia taurangi.
5n-11=n+6-1
Pahekotia te 2n me -n, ka n.
5n-11=n+5
Tangohia te 1 i te 6, ka 5.
5n-11-n=5
Tangohia te n mai i ngā taha e rua.
4n-11=5
Pahekotia te 5n me -n, ka 4n.
4n=5+11
Me tāpiri te 11 ki ngā taha e rua.
4n=16
Tāpirihia te 5 ki te 11, ka 16.
n=\frac{16}{4}
Whakawehea ngā taha e rua ki te 4.
n=4
Whakawehea te 16 ki te 4, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}