Whakaoti mō m
m=\frac{x}{2}+n+\frac{7}{2}
Whakaoti mō n
n=-\frac{x}{2}+m-\frac{7}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2m-2n=x+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-n.
2m=x+7+2n
Me tāpiri te 2n ki ngā taha e rua.
2m=x+2n+7
He hanga arowhānui tō te whārite.
\frac{2m}{2}=\frac{x+2n+7}{2}
Whakawehea ngā taha e rua ki te 2.
m=\frac{x+2n+7}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m=\frac{x}{2}+n+\frac{7}{2}
Whakawehe x+7+2n ki te 2.
2m-2n=x+7
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-n.
-2n=x+7-2m
Tangohia te 2m mai i ngā taha e rua.
-2n=x-2m+7
He hanga arowhānui tō te whārite.
\frac{-2n}{-2}=\frac{x-2m+7}{-2}
Whakawehea ngā taha e rua ki te -2.
n=\frac{x-2m+7}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
n=-\frac{x}{2}+m-\frac{7}{2}
Whakawehe x+7-2m ki te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}