Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=\frac{3\left(m-2\right)}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=-1\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=\frac{3\left(m-2\right)}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&m=-1\end{matrix}\right.
Whakaoti mō m
m=\frac{2\left(x+3\right)}{3}
m=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2m+2\right)x=3\left(m+1\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m+1.
2mx+2x=3\left(m+1\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2m+2 ki te x.
2mx+2x=\left(3m+3\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te m+1.
2mx+2x=3m^{2}-3m-6
Whakamahia te āhuatanga tuaritanga hei whakarea te 3m+3 ki te m-2 ka whakakotahi i ngā kupu rite.
\left(2m+2\right)x=3m^{2}-3m-6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(2m+2\right)x}{2m+2}=\frac{3\left(m-2\right)\left(m+1\right)}{2m+2}
Whakawehea ngā taha e rua ki te 2m+2.
x=\frac{3\left(m-2\right)\left(m+1\right)}{2m+2}
Mā te whakawehe ki te 2m+2 ka wetekia te whakareanga ki te 2m+2.
x=\frac{3m}{2}-3
Whakawehe 3\left(-2+m\right)\left(1+m\right) ki te 2m+2.
\left(2m+2\right)x=3\left(m+1\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m+1.
2mx+2x=3\left(m+1\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2m+2 ki te x.
2mx+2x=\left(3m+3\right)\left(m-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te m+1.
2mx+2x=3m^{2}-3m-6
Whakamahia te āhuatanga tuaritanga hei whakarea te 3m+3 ki te m-2 ka whakakotahi i ngā kupu rite.
\left(2m+2\right)x=3m^{2}-3m-6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(2m+2\right)x}{2m+2}=\frac{3\left(m-2\right)\left(m+1\right)}{2m+2}
Whakawehea ngā taha e rua ki te 2m+2.
x=\frac{3\left(m-2\right)\left(m+1\right)}{2m+2}
Mā te whakawehe ki te 2m+2 ka wetekia te whakareanga ki te 2m+2.
x=\frac{3m}{2}-3
Whakawehe 3\left(-2+m\right)\left(1+m\right) ki te 2m+2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}