Whakaoti mō w
w=\frac{70}{4x+1}
x\neq -\frac{1}{4}
Whakaoti mō x
x=-\frac{1}{4}+\frac{35}{2w}
w\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
8xw+2w=140
Whakareatia te 2 ki te 4, ka 8.
\left(8x+2\right)w=140
Pahekotia ngā kīanga tau katoa e whai ana i te w.
\frac{\left(8x+2\right)w}{8x+2}=\frac{140}{8x+2}
Whakawehea ngā taha e rua ki te 8x+2.
w=\frac{140}{8x+2}
Mā te whakawehe ki te 8x+2 ka wetekia te whakareanga ki te 8x+2.
w=\frac{70}{4x+1}
Whakawehe 140 ki te 8x+2.
8xw+2w=140
Whakareatia te 2 ki te 4, ka 8.
8xw=140-2w
Tangohia te 2w mai i ngā taha e rua.
8wx=140-2w
He hanga arowhānui tō te whārite.
\frac{8wx}{8w}=\frac{140-2w}{8w}
Whakawehea ngā taha e rua ki te 8w.
x=\frac{140-2w}{8w}
Mā te whakawehe ki te 8w ka wetekia te whakareanga ki te 8w.
x=-\frac{1}{4}+\frac{35}{2w}
Whakawehe 140-2w ki te 8w.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}