2 ( 4 ( 1 + i ) - 3 ( 1 + i ) - 3 ( 2 ( 1 + i ) + 1 - i )
Aromātai
-16-4i
Wāhi Tūturu
-16
Tohaina
Kua tāruatia ki te papatopenga
2\left(4\times 1+4i-3\left(1+i\right)-3\left(2\left(1+i\right)+1-i\right)\right)
Whakareatia 4 ki te 1+i.
2\left(4+4i-3\left(1+i\right)-3\left(2\left(1+i\right)+1-i\right)\right)
Mahia ngā whakarea i roto o 4\times 1+4i.
2\left(4+4i-\left(3\times 1+3i\right)-3\left(2\left(1+i\right)+1-i\right)\right)
Whakareatia 3 ki te 1+i.
2\left(4+4i-\left(3+3i\right)-3\left(2\left(1+i\right)+1-i\right)\right)
Mahia ngā whakarea i roto o 3\times 1+3i.
2\left(4-3+\left(4-3\right)i-3\left(2\left(1+i\right)+1-i\right)\right)
Tangohia te 3+3i i te 4+4i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
2\left(1+i-3\left(2\left(1+i\right)+1-i\right)\right)
Tango 3 mai i 4. Tango 3 mai i 4.
2\left(1+i-3\left(2\times 1+2i+1-i\right)\right)
Whakareatia 2 ki te 1+i.
2\left(1+i-3\left(2+2i+1-i\right)\right)
Mahia ngā whakarea i roto o 2\times 1+2i.
2\left(1+i-3\left(2+1+\left(2-1\right)i\right)\right)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+2i+1-i.
2\left(1+i-3\left(3+i\right)\right)
Mahia ngā tāpiri i roto o 2+1+\left(2-1\right)i.
2\left(1+i-\left(3\times 3+3i\right)\right)
Whakareatia 3 ki te 3+i.
2\left(1+i-\left(9+3i\right)\right)
Mahia ngā whakarea i roto o 3\times 3+3i.
2\left(1-9+\left(1-3\right)i\right)
Tangohia te 9+3i i te 1+i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
2\left(-8-2i\right)
Tango 9 mai i 1. Tango 3 mai i 1.
2\left(-8\right)+2\times \left(-2i\right)
Whakareatia 2 ki te -8-2i.
-16-4i
Mahia ngā whakarea.
Re(2\left(4\times 1+4i-3\left(1+i\right)-3\left(2\left(1+i\right)+1-i\right)\right))
Whakareatia 4 ki te 1+i.
Re(2\left(4+4i-3\left(1+i\right)-3\left(2\left(1+i\right)+1-i\right)\right))
Mahia ngā whakarea i roto o 4\times 1+4i.
Re(2\left(4+4i-\left(3\times 1+3i\right)-3\left(2\left(1+i\right)+1-i\right)\right))
Whakareatia 3 ki te 1+i.
Re(2\left(4+4i-\left(3+3i\right)-3\left(2\left(1+i\right)+1-i\right)\right))
Mahia ngā whakarea i roto o 3\times 1+3i.
Re(2\left(4-3+\left(4-3\right)i-3\left(2\left(1+i\right)+1-i\right)\right))
Tangohia te 3+3i i te 4+4i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
Re(2\left(1+i-3\left(2\left(1+i\right)+1-i\right)\right))
Tango 3 mai i 4. Tango 3 mai i 4.
Re(2\left(1+i-3\left(2\times 1+2i+1-i\right)\right))
Whakareatia 2 ki te 1+i.
Re(2\left(1+i-3\left(2+2i+1-i\right)\right))
Mahia ngā whakarea i roto o 2\times 1+2i.
Re(2\left(1+i-3\left(2+1+\left(2-1\right)i\right)\right))
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 2+2i+1-i.
Re(2\left(1+i-3\left(3+i\right)\right))
Mahia ngā tāpiri i roto o 2+1+\left(2-1\right)i.
Re(2\left(1+i-\left(3\times 3+3i\right)\right))
Whakareatia 3 ki te 3+i.
Re(2\left(1+i-\left(9+3i\right)\right))
Mahia ngā whakarea i roto o 3\times 3+3i.
Re(2\left(1-9+\left(1-3\right)i\right))
Tangohia te 9+3i i te 1+i mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
Re(2\left(-8-2i\right))
Tango 9 mai i 1. Tango 3 mai i 1.
Re(2\left(-8\right)+2\times \left(-2i\right))
Whakareatia 2 ki te -8-2i.
Re(-16-4i)
Mahia ngā whakarea i roto o 2\left(-8\right)+2\times \left(-2i\right).
-16
Ko te wāhi tūturu o -16-4i ko -16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}