Whakaoti mō v
v=-\frac{3y-2}{4\left(3-2y\right)}
y\neq \frac{3}{2}
Whakaoti mō y
y=-\frac{2\left(6v-1\right)}{3-8v}
v\neq \frac{3}{8}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6y-4=8\left(2y-3\right)v
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3y-2.
6y-4=\left(16y-24\right)v
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 2y-3.
6y-4=16yv-24v
Whakamahia te āhuatanga tohatoha hei whakarea te 16y-24 ki te v.
16yv-24v=6y-4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(16y-24\right)v=6y-4
Pahekotia ngā kīanga tau katoa e whai ana i te v.
\frac{\left(16y-24\right)v}{16y-24}=\frac{6y-4}{16y-24}
Whakawehea ngā taha e rua ki te 16y-24.
v=\frac{6y-4}{16y-24}
Mā te whakawehe ki te 16y-24 ka wetekia te whakareanga ki te 16y-24.
v=\frac{3y-2}{4\left(2y-3\right)}
Whakawehe 6y-4 ki te 16y-24.
6y-4=8\left(2y-3\right)v
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3y-2.
6y-4=\left(16y-24\right)v
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 2y-3.
6y-4=16yv-24v
Whakamahia te āhuatanga tohatoha hei whakarea te 16y-24 ki te v.
6y-4-16yv=-24v
Tangohia te 16yv mai i ngā taha e rua.
6y-16yv=-24v+4
Me tāpiri te 4 ki ngā taha e rua.
\left(6-16v\right)y=-24v+4
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(6-16v\right)y=4-24v
He hanga arowhānui tō te whārite.
\frac{\left(6-16v\right)y}{6-16v}=\frac{4-24v}{6-16v}
Whakawehea ngā taha e rua ki te -16v+6.
y=\frac{4-24v}{6-16v}
Mā te whakawehe ki te -16v+6 ka wetekia te whakareanga ki te -16v+6.
y=\frac{2\left(1-6v\right)}{3-8v}
Whakawehe -24v+4 ki te -16v+6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}