Whakaoti mō x
x=\frac{7y+17}{6}
Whakaoti mō y
y=\frac{6x-17}{7}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-10y+3y=17
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-5y.
6x-7y=17
Pahekotia te -10y me 3y, ka -7y.
6x=17+7y
Me tāpiri te 7y ki ngā taha e rua.
6x=7y+17
He hanga arowhānui tō te whārite.
\frac{6x}{6}=\frac{7y+17}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{7y+17}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
6x-10y+3y=17
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-5y.
6x-7y=17
Pahekotia te -10y me 3y, ka -7y.
-7y=17-6x
Tangohia te 6x mai i ngā taha e rua.
\frac{-7y}{-7}=\frac{17-6x}{-7}
Whakawehea ngā taha e rua ki te -7.
y=\frac{17-6x}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
y=\frac{6x-17}{7}
Whakawehe 17-6x ki te -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}