Whakaoti mō x
x = \frac{43}{36} = 1\frac{7}{36} \approx 1.194444444
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
2 ( 3 x - 2 ) - \frac { 2 } { 4 } = \frac { 8 } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
6x-4-\frac{2}{4}=\frac{8}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-2.
6x-4-\frac{1}{2}=\frac{8}{3}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6x-\frac{8}{2}-\frac{1}{2}=\frac{8}{3}
Me tahuri te -4 ki te hautau -\frac{8}{2}.
6x+\frac{-8-1}{2}=\frac{8}{3}
Tā te mea he rite te tauraro o -\frac{8}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
6x-\frac{9}{2}=\frac{8}{3}
Tangohia te 1 i te -8, ka -9.
6x=\frac{8}{3}+\frac{9}{2}
Me tāpiri te \frac{9}{2} ki ngā taha e rua.
6x=\frac{16}{6}+\frac{27}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{8}{3} me \frac{9}{2} ki te hautau me te tautūnga 6.
6x=\frac{16+27}{6}
Tā te mea he rite te tauraro o \frac{16}{6} me \frac{27}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
6x=\frac{43}{6}
Tāpirihia te 16 ki te 27, ka 43.
x=\frac{\frac{43}{6}}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{43}{6\times 6}
Tuhia te \frac{\frac{43}{6}}{6} hei hautanga kotahi.
x=\frac{43}{36}
Whakareatia te 6 ki te 6, ka 36.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}