Whakaoti mō x
x=-\frac{1}{3}\approx -0.333333333
x=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(9x^{2}+30x+25\right)-10=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x^{2}+30x+25.
18x^{2}+60x+40=22
Tangohia te 10 i te 50, ka 40.
18x^{2}+60x+40-22=0
Tangohia te 22 mai i ngā taha e rua.
18x^{2}+60x+18=0
Tangohia te 22 i te 40, ka 18.
3x^{2}+10x+3=0
Whakawehea ngā taha e rua ki te 6.
a+b=10 ab=3\times 3=9
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,9 3,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 9.
1+9=10 3+3=6
Tātaihia te tapeke mō ia takirua.
a=1 b=9
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(3x^{2}+x\right)+\left(9x+3\right)
Tuhia anō te 3x^{2}+10x+3 hei \left(3x^{2}+x\right)+\left(9x+3\right).
x\left(3x+1\right)+3\left(3x+1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x+1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-3
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te x+3=0.
2\left(9x^{2}+30x+25\right)-10=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x^{2}+30x+25.
18x^{2}+60x+40=22
Tangohia te 10 i te 50, ka 40.
18x^{2}+60x+40-22=0
Tangohia te 22 mai i ngā taha e rua.
18x^{2}+60x+18=0
Tangohia te 22 i te 40, ka 18.
x=\frac{-60±\sqrt{60^{2}-4\times 18\times 18}}{2\times 18}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 18 mō a, 60 mō b, me 18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 18\times 18}}{2\times 18}
Pūrua 60.
x=\frac{-60±\sqrt{3600-72\times 18}}{2\times 18}
Whakareatia -4 ki te 18.
x=\frac{-60±\sqrt{3600-1296}}{2\times 18}
Whakareatia -72 ki te 18.
x=\frac{-60±\sqrt{2304}}{2\times 18}
Tāpiri 3600 ki te -1296.
x=\frac{-60±48}{2\times 18}
Tuhia te pūtakerua o te 2304.
x=\frac{-60±48}{36}
Whakareatia 2 ki te 18.
x=-\frac{12}{36}
Nā, me whakaoti te whārite x=\frac{-60±48}{36} ina he tāpiri te ±. Tāpiri -60 ki te 48.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-12}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=-\frac{108}{36}
Nā, me whakaoti te whārite x=\frac{-60±48}{36} ina he tango te ±. Tango 48 mai i -60.
x=-3
Whakawehe -108 ki te 36.
x=-\frac{1}{3} x=-3
Kua oti te whārite te whakatau.
2\left(9x^{2}+30x+25\right)-10=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(3x+5\right)^{2}.
18x^{2}+60x+50-10=22
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 9x^{2}+30x+25.
18x^{2}+60x+40=22
Tangohia te 10 i te 50, ka 40.
18x^{2}+60x=22-40
Tangohia te 40 mai i ngā taha e rua.
18x^{2}+60x=-18
Tangohia te 40 i te 22, ka -18.
\frac{18x^{2}+60x}{18}=-\frac{18}{18}
Whakawehea ngā taha e rua ki te 18.
x^{2}+\frac{60}{18}x=-\frac{18}{18}
Mā te whakawehe ki te 18 ka wetekia te whakareanga ki te 18.
x^{2}+\frac{10}{3}x=-\frac{18}{18}
Whakahekea te hautanga \frac{60}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}+\frac{10}{3}x=-1
Whakawehe -18 ki te 18.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-1+\left(\frac{5}{3}\right)^{2}
Whakawehea te \frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{3}. Nā, tāpiria te pūrua o te \frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-1+\frac{25}{9}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{16}{9}
Tāpiri -1 ki te \frac{25}{9}.
\left(x+\frac{5}{3}\right)^{2}=\frac{16}{9}
Tauwehea x^{2}+\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{3}=\frac{4}{3} x+\frac{5}{3}=-\frac{4}{3}
Whakarūnātia.
x=-\frac{1}{3} x=-3
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}