Aromātai
25+46i
Wāhi Tūturu
25
Tohaina
Kua tāruatia ki te papatopenga
6i-5i\left(-8+5i\right)
Whakareatia te 2 ki te 3i, ka 6i.
6i-\left(5i\left(-8\right)+5\times 5i^{2}\right)
Whakareatia 5i ki te -8+5i.
6i-\left(5i\left(-8\right)+5\times 5\left(-1\right)\right)
Hei tōna tikanga, ko te i^{2} ko -1.
6i-\left(-25-40i\right)
Mahia ngā whakarea i roto o 5i\left(-8\right)+5\times 5\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
6i+\left(25+40i\right)
Ko te tauaro o -25-40i ko 25+40i.
25+\left(6+40\right)i
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 6i me te 25+40i.
25+46i
Tāpiri 6 ki te 40.
Re(6i-5i\left(-8+5i\right))
Whakareatia te 2 ki te 3i, ka 6i.
Re(6i-\left(5i\left(-8\right)+5\times 5i^{2}\right))
Whakareatia 5i ki te -8+5i.
Re(6i-\left(5i\left(-8\right)+5\times 5\left(-1\right)\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(6i-\left(-25-40i\right))
Mahia ngā whakarea i roto o 5i\left(-8\right)+5\times 5\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(6i+\left(25+40i\right))
Ko te tauaro o -25-40i ko 25+40i.
Re(25+\left(6+40\right)i)
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o 6i me te 25+40i.
Re(25+46i)
Tāpiri 6 ki te 40.
25
Ko te wāhi tūturu o 25+46i ko 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}