Whakaoti mō u
u=\frac{1}{2}=0.5
u = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
4u^{2}-8u+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2u^{2}-4u.
a+b=-8 ab=4\times 3=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4u^{2}+au+bu+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(4u^{2}-6u\right)+\left(-2u+3\right)
Tuhia anō te 4u^{2}-8u+3 hei \left(4u^{2}-6u\right)+\left(-2u+3\right).
2u\left(2u-3\right)-\left(2u-3\right)
Tauwehea te 2u i te tuatahi me te -1 i te rōpū tuarua.
\left(2u-3\right)\left(2u-1\right)
Whakatauwehea atu te kīanga pātahi 2u-3 mā te whakamahi i te āhuatanga tātai tohatoha.
u=\frac{3}{2} u=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 2u-3=0 me te 2u-1=0.
4u^{2}-8u+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2u^{2}-4u.
u=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -8 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
Pūrua -8.
u=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
u=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
Whakareatia -16 ki te 3.
u=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
Tāpiri 64 ki te -48.
u=\frac{-\left(-8\right)±4}{2\times 4}
Tuhia te pūtakerua o te 16.
u=\frac{8±4}{2\times 4}
Ko te tauaro o -8 ko 8.
u=\frac{8±4}{8}
Whakareatia 2 ki te 4.
u=\frac{12}{8}
Nā, me whakaoti te whārite u=\frac{8±4}{8} ina he tāpiri te ±. Tāpiri 8 ki te 4.
u=\frac{3}{2}
Whakahekea te hautanga \frac{12}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
u=\frac{4}{8}
Nā, me whakaoti te whārite u=\frac{8±4}{8} ina he tango te ±. Tango 4 mai i 8.
u=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
u=\frac{3}{2} u=\frac{1}{2}
Kua oti te whārite te whakatau.
4u^{2}-8u+3=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2u^{2}-4u.
4u^{2}-8u=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4u^{2}-8u}{4}=-\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
u^{2}+\left(-\frac{8}{4}\right)u=-\frac{3}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
u^{2}-2u=-\frac{3}{4}
Whakawehe -8 ki te 4.
u^{2}-2u+1=-\frac{3}{4}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}-2u+1=\frac{1}{4}
Tāpiri -\frac{3}{4} ki te 1.
\left(u-1\right)^{2}=\frac{1}{4}
Tauwehea u^{2}-2u+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-1\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u-1=\frac{1}{2} u-1=-\frac{1}{2}
Whakarūnātia.
u=\frac{3}{2} u=\frac{1}{2}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}