Whakaoti mō n
n=-5
Tohaina
Kua tāruatia ki te papatopenga
4-2n-2n=-6\left(1+n\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2-n.
4-4n=-6\left(1+n\right)
Pahekotia te -2n me -2n, ka -4n.
4-4n=-6-6n
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 1+n.
4-4n+6n=-6
Me tāpiri te 6n ki ngā taha e rua.
4+2n=-6
Pahekotia te -4n me 6n, ka 2n.
2n=-6-4
Tangohia te 4 mai i ngā taha e rua.
2n=-10
Tangohia te 4 i te -6, ka -10.
n=\frac{-10}{2}
Whakawehea ngā taha e rua ki te 2.
n=-5
Whakawehea te -10 ki te 2, kia riro ko -5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}