Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(2-2\right)\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Whakareatia te 2 ki te 1, ka 2.
2\times 0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Tangohia te 2 i te 2, ka 0.
0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Whakareatia te 2 ki te 0, ka 0.
0=\left(x^{2}+2\right)\left(2-1\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=\left(x^{2}+2\right)\times 1
Tangohia te 1 i te 2, ka 1.
0=x^{2}+2
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+2 ki te 1.
x^{2}+2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\sqrt{2}i x=-\sqrt{2}i
Kua oti te whārite te whakatau.
2\left(2-2\right)\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Whakareatia te 2 ki te 1, ka 2.
2\times 0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Tangohia te 2 i te 2, ka 0.
0\left(x^{2}+y\right)=\left(x^{2}+2\right)\left(2-1\right)
Whakareatia te 2 ki te 0, ka 0.
0=\left(x^{2}+2\right)\left(2-1\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=\left(x^{2}+2\right)\times 1
Tangohia te 1 i te 2, ka 1.
0=x^{2}+2
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+2 ki te 1.
x^{2}+2=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{0±\sqrt{0^{2}-4\times 2}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2}}{2}
Pūrua 0.
x=\frac{0±\sqrt{-8}}{2}
Whakareatia -4 ki te 2.
x=\frac{0±2\sqrt{2}i}{2}
Tuhia te pūtakerua o te -8.
x=\sqrt{2}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}i}{2} ina he tāpiri te ±.
x=-\sqrt{2}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{2}i}{2} ina he tango te ±.
x=\sqrt{2}i x=-\sqrt{2}i
Kua oti te whārite te whakatau.