Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times \frac{7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{7}{3}-\frac{5}{3}y.
\frac{2\times 7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Tuhia te 2\times \frac{7}{3} hei hautanga kotahi.
\frac{14}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Whakareatia te 2 ki te 7, ka 14.
\frac{14}{3}+\frac{2\left(-5\right)}{3}y+7y=12
Tuhia te 2\left(-\frac{5}{3}\right) hei hautanga kotahi.
\frac{14}{3}+\frac{-10}{3}y+7y=12
Whakareatia te 2 ki te -5, ka -10.
\frac{14}{3}-\frac{10}{3}y+7y=12
Ka taea te hautanga \frac{-10}{3} te tuhi anō ko -\frac{10}{3} mā te tango i te tohu tōraro.
\frac{14}{3}+\frac{11}{3}y=12
Pahekotia te -\frac{10}{3}y me 7y, ka \frac{11}{3}y.
\frac{11}{3}y=12-\frac{14}{3}
Tangohia te \frac{14}{3} mai i ngā taha e rua.
\frac{11}{3}y=\frac{36}{3}-\frac{14}{3}
Me tahuri te 12 ki te hautau \frac{36}{3}.
\frac{11}{3}y=\frac{36-14}{3}
Tā te mea he rite te tauraro o \frac{36}{3} me \frac{14}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{3}y=\frac{22}{3}
Tangohia te 14 i te 36, ka 22.
y=\frac{22}{3}\times \frac{3}{11}
Me whakarea ngā taha e rua ki te \frac{3}{11}, te tau utu o \frac{11}{3}.
y=\frac{22\times 3}{3\times 11}
Me whakarea te \frac{22}{3} ki te \frac{3}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{22}{11}
Me whakakore tahi te 3 i te taurunga me te tauraro.
y=2
Whakawehea te 22 ki te 11, kia riro ko 2.