Whakaoti mō y
y=2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
2 ( \frac { 7 } { 3 } - \frac { 5 } { 3 } y ) + 7 y = 12
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{7}{3}-\frac{5}{3}y.
\frac{2\times 7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Tuhia te 2\times \frac{7}{3} hei hautanga kotahi.
\frac{14}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Whakareatia te 2 ki te 7, ka 14.
\frac{14}{3}+\frac{2\left(-5\right)}{3}y+7y=12
Tuhia te 2\left(-\frac{5}{3}\right) hei hautanga kotahi.
\frac{14}{3}+\frac{-10}{3}y+7y=12
Whakareatia te 2 ki te -5, ka -10.
\frac{14}{3}-\frac{10}{3}y+7y=12
Ka taea te hautanga \frac{-10}{3} te tuhi anō ko -\frac{10}{3} mā te tango i te tohu tōraro.
\frac{14}{3}+\frac{11}{3}y=12
Pahekotia te -\frac{10}{3}y me 7y, ka \frac{11}{3}y.
\frac{11}{3}y=12-\frac{14}{3}
Tangohia te \frac{14}{3} mai i ngā taha e rua.
\frac{11}{3}y=\frac{36}{3}-\frac{14}{3}
Me tahuri te 12 ki te hautau \frac{36}{3}.
\frac{11}{3}y=\frac{36-14}{3}
Tā te mea he rite te tauraro o \frac{36}{3} me \frac{14}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{11}{3}y=\frac{22}{3}
Tangohia te 14 i te 36, ka 22.
y=\frac{22}{3}\times \frac{3}{11}
Me whakarea ngā taha e rua ki te \frac{3}{11}, te tau utu o \frac{11}{3}.
y=\frac{22\times 3}{3\times 11}
Me whakarea te \frac{22}{3} ki te \frac{3}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{22}{11}
Me whakakore tahi te 3 i te taurunga me te tauraro.
y=2
Whakawehea te 22 ki te 11, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}