Whakaoti mō x
x\leq \frac{5}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{3}{2}x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{3}{2}x-\frac{21}{10}.
3x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Me whakakore te 2 me te 2.
3x+\frac{2\left(-21\right)}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Tuhia te 2\left(-\frac{21}{10}\right) hei hautanga kotahi.
3x+\frac{-42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Whakareatia te 2 ki te -21, ka -42.
3x-\frac{21}{5}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Whakahekea te hautanga \frac{-42}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3x-\frac{42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri -\frac{21}{5} me \frac{17}{10} ki te hautau me te tautūnga 10.
3x+\frac{-42+17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Tā te mea he rite te tauraro o -\frac{42}{10} me \frac{17}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3x+\frac{-25}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Tāpirihia te -42 ki te 17, ka -25.
3x-\frac{5}{2}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Whakahekea te hautanga \frac{-25}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
3x-\frac{5}{2}\geq 2\times \frac{12}{5}x+2\left(-\frac{7}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{12}{5}x-\frac{7}{2}.
3x-\frac{5}{2}\geq \frac{2\times 12}{5}x+2\left(-\frac{7}{2}\right)
Tuhia te 2\times \frac{12}{5} hei hautanga kotahi.
3x-\frac{5}{2}\geq \frac{24}{5}x+2\left(-\frac{7}{2}\right)
Whakareatia te 2 ki te 12, ka 24.
3x-\frac{5}{2}\geq \frac{24}{5}x-7
Me whakakore te 2 me te 2.
3x-\frac{5}{2}-\frac{24}{5}x\geq -7
Tangohia te \frac{24}{5}x mai i ngā taha e rua.
-\frac{9}{5}x-\frac{5}{2}\geq -7
Pahekotia te 3x me -\frac{24}{5}x, ka -\frac{9}{5}x.
-\frac{9}{5}x\geq -7+\frac{5}{2}
Me tāpiri te \frac{5}{2} ki ngā taha e rua.
-\frac{9}{5}x\geq -\frac{14}{2}+\frac{5}{2}
Me tahuri te -7 ki te hautau -\frac{14}{2}.
-\frac{9}{5}x\geq \frac{-14+5}{2}
Tā te mea he rite te tauraro o -\frac{14}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{9}{5}x\geq -\frac{9}{2}
Tāpirihia te -14 ki te 5, ka -9.
x\leq -\frac{9}{2}\left(-\frac{5}{9}\right)
Me whakarea ngā taha e rua ki te -\frac{5}{9}, te tau utu o -\frac{9}{5}. I te mea he tōraro a -\frac{9}{5}, ka huri te ahunga koreōrite.
x\leq \frac{-9\left(-5\right)}{2\times 9}
Me whakarea te -\frac{9}{2} ki te -\frac{5}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x\leq \frac{45}{18}
Mahia ngā whakarea i roto i te hautanga \frac{-9\left(-5\right)}{2\times 9}.
x\leq \frac{5}{2}
Whakahekea te hautanga \frac{45}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}