Whakaoti mō x
x=80
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
2 ( \frac { 1000 } { x } ) = \frac { 7000 } { x + 200 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(x+200\right)\times 1000=x\times 7000
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -200,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+200\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+200.
2000\left(x+200\right)=x\times 7000
Whakareatia te 2 ki te 1000, ka 2000.
2000x+400000=x\times 7000
Whakamahia te āhuatanga tohatoha hei whakarea te 2000 ki te x+200.
2000x+400000-x\times 7000=0
Tangohia te x\times 7000 mai i ngā taha e rua.
-5000x+400000=0
Pahekotia te 2000x me -x\times 7000, ka -5000x.
-5000x=-400000
Tangohia te 400000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-400000}{-5000}
Whakawehea ngā taha e rua ki te -5000.
x=80
Whakawehea te -400000 ki te -5000, kia riro ko 80.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}