Whakaoti mō x
x=\frac{1-2y}{15}
Whakaoti mō y
y=\frac{1-15x}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-6x=2y+\frac{1}{2}\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3x-1.
y-6x-\frac{3}{2}x=2y-\frac{1}{2}
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
y-\frac{15}{2}x=2y-\frac{1}{2}
Pahekotia te -6x me -\frac{3}{2}x, ka -\frac{15}{2}x.
-\frac{15}{2}x=2y-\frac{1}{2}-y
Tangohia te y mai i ngā taha e rua.
-\frac{15}{2}x=y-\frac{1}{2}
Pahekotia te 2y me -y, ka y.
\frac{-\frac{15}{2}x}{-\frac{15}{2}}=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Mā te whakawehe ki te -\frac{15}{2} ka wetekia te whakareanga ki te -\frac{15}{2}.
x=\frac{1-2y}{15}
Whakawehe y-\frac{1}{2} ki te -\frac{15}{2} mā te whakarea y-\frac{1}{2} ki te tau huripoki o -\frac{15}{2}.
y-6x=2y+\frac{1}{2}\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3x-1.
y-6x-2y=\frac{3}{2}x-\frac{1}{2}
Tangohia te 2y mai i ngā taha e rua.
-y-6x=\frac{3}{2}x-\frac{1}{2}
Pahekotia te y me -2y, ka -y.
-y=\frac{3}{2}x-\frac{1}{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
-y=\frac{15}{2}x-\frac{1}{2}
Pahekotia te \frac{3}{2}x me 6x, ka \frac{15}{2}x.
-y=\frac{15x-1}{2}
He hanga arowhānui tō te whārite.
\frac{-y}{-1}=\frac{15x-1}{-2}
Whakawehea ngā taha e rua ki te -1.
y=\frac{15x-1}{-2}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y=\frac{1-15x}{2}
Whakawehe \frac{15x-1}{2} ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}