Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-6x=2y+\frac{1}{2}\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3x-1.
y-6x-\frac{3}{2}x=2y-\frac{1}{2}
Tangohia te \frac{3}{2}x mai i ngā taha e rua.
y-\frac{15}{2}x=2y-\frac{1}{2}
Pahekotia te -6x me -\frac{3}{2}x, ka -\frac{15}{2}x.
-\frac{15}{2}x=2y-\frac{1}{2}-y
Tangohia te y mai i ngā taha e rua.
-\frac{15}{2}x=y-\frac{1}{2}
Pahekotia te 2y me -y, ka y.
\frac{-\frac{15}{2}x}{-\frac{15}{2}}=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Mā te whakawehe ki te -\frac{15}{2} ka wetekia te whakareanga ki te -\frac{15}{2}.
x=\frac{1-2y}{15}
Whakawehe y-\frac{1}{2} ki te -\frac{15}{2} mā te whakarea y-\frac{1}{2} ki te tau huripoki o -\frac{15}{2}.
y-6x=2y+\frac{1}{2}\left(3x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te 3x-1.
y-6x-2y=\frac{3}{2}x-\frac{1}{2}
Tangohia te 2y mai i ngā taha e rua.
-y-6x=\frac{3}{2}x-\frac{1}{2}
Pahekotia te y me -2y, ka -y.
-y=\frac{3}{2}x-\frac{1}{2}+6x
Me tāpiri te 6x ki ngā taha e rua.
-y=\frac{15}{2}x-\frac{1}{2}
Pahekotia te \frac{3}{2}x me 6x, ka \frac{15}{2}x.
-y=\frac{15x-1}{2}
He hanga arowhānui tō te whārite.
\frac{-y}{-1}=\frac{15x-1}{-2}
Whakawehea ngā taha e rua ki te -1.
y=\frac{15x-1}{-2}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
y=\frac{1-15x}{2}
Whakawehe \frac{15x-1}{2} ki te -1.