Aromātai
14\sqrt{3}-17\sqrt{2}\approx 0.207080746
Tauwehe
14 \sqrt{3} - 17 \sqrt{2} = 0.207080746
Tohaina
Kua tāruatia ki te papatopenga
2\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\left(\frac{\sqrt{2}}{2}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\left(\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2}{2}.
2\times \frac{\sqrt{2}+2\sqrt{3}}{2}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{2}+2\sqrt{3}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Me whakakore te 2 me te 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Whakareatia te 6 ki te 6, ka 36.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}\right)
Ko te pūrua o \sqrt{2} ko 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right)
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{2}+2\sqrt{3}-36\left(\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{\sqrt{2}}{2} ki te \frac{3}{3}. Whakareatia \frac{\sqrt{3}}{3} ki te \frac{2}{2}.
\sqrt{2}+2\sqrt{3}-36\times \frac{3\sqrt{2}-2\sqrt{3}}{6}
Tā te mea he rite te tauraro o \frac{3\sqrt{2}}{6} me \frac{2\sqrt{3}}{6}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{2}+2\sqrt{3}-6\left(3\sqrt{2}-2\sqrt{3}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 36 me te 6.
\sqrt{2}+2\sqrt{3}-18\sqrt{2}+12\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 3\sqrt{2}-2\sqrt{3}.
-17\sqrt{2}+2\sqrt{3}+12\sqrt{3}
Pahekotia te \sqrt{2} me -18\sqrt{2}, ka -17\sqrt{2}.
-17\sqrt{2}+14\sqrt{3}
Pahekotia te 2\sqrt{3} me 12\sqrt{3}, ka 14\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}