Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\left(\frac{\sqrt{2}}{2}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\left(\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{3} ki te \frac{2}{2}.
2\times \frac{\sqrt{2}+2\sqrt{3}}{2}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Tā te mea he rite te tauraro o \frac{\sqrt{2}}{2} me \frac{2\sqrt{3}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{2}+2\sqrt{3}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Me whakakore te 2 me te 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Whakareatia te 6 ki te 6, ka 36.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}\right)
Ko te pūrua o \sqrt{2} ko 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right)
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{2}+2\sqrt{3}-36\left(\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{\sqrt{2}}{2} ki te \frac{3}{3}. Whakareatia \frac{\sqrt{3}}{3} ki te \frac{2}{2}.
\sqrt{2}+2\sqrt{3}-36\times \frac{3\sqrt{2}-2\sqrt{3}}{6}
Tā te mea he rite te tauraro o \frac{3\sqrt{2}}{6} me \frac{2\sqrt{3}}{6}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{2}+2\sqrt{3}-6\left(3\sqrt{2}-2\sqrt{3}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 36 me te 6.
\sqrt{2}+2\sqrt{3}-18\sqrt{2}+12\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 3\sqrt{2}-2\sqrt{3}.
-17\sqrt{2}+2\sqrt{3}+12\sqrt{3}
Pahekotia te \sqrt{2} me -18\sqrt{2}, ka -17\sqrt{2}.
-17\sqrt{2}+14\sqrt{3}
Pahekotia te 2\sqrt{3} me 12\sqrt{3}, ka 14\sqrt{3}.