Whakaoti mō x
x=25\sqrt{15}-75\approx 21.824583655
x=-25\sqrt{15}-75\approx -171.824583655
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+300x-7500=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-300±\sqrt{300^{2}-4\times 2\left(-7500\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 300 mō b, me -7500 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\times 2\left(-7500\right)}}{2\times 2}
Pūrua 300.
x=\frac{-300±\sqrt{90000-8\left(-7500\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-300±\sqrt{90000+60000}}{2\times 2}
Whakareatia -8 ki te -7500.
x=\frac{-300±\sqrt{150000}}{2\times 2}
Tāpiri 90000 ki te 60000.
x=\frac{-300±100\sqrt{15}}{2\times 2}
Tuhia te pūtakerua o te 150000.
x=\frac{-300±100\sqrt{15}}{4}
Whakareatia 2 ki te 2.
x=\frac{100\sqrt{15}-300}{4}
Nā, me whakaoti te whārite x=\frac{-300±100\sqrt{15}}{4} ina he tāpiri te ±. Tāpiri -300 ki te 100\sqrt{15}.
x=25\sqrt{15}-75
Whakawehe -300+100\sqrt{15} ki te 4.
x=\frac{-100\sqrt{15}-300}{4}
Nā, me whakaoti te whārite x=\frac{-300±100\sqrt{15}}{4} ina he tango te ±. Tango 100\sqrt{15} mai i -300.
x=-25\sqrt{15}-75
Whakawehe -300-100\sqrt{15} ki te 4.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
Kua oti te whārite te whakatau.
2x^{2}+300x-7500=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+300x-7500-\left(-7500\right)=-\left(-7500\right)
Me tāpiri 7500 ki ngā taha e rua o te whārite.
2x^{2}+300x=-\left(-7500\right)
Mā te tango i te -7500 i a ia ake anō ka toe ko te 0.
2x^{2}+300x=7500
Tango -7500 mai i 0.
\frac{2x^{2}+300x}{2}=\frac{7500}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{300}{2}x=\frac{7500}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+150x=\frac{7500}{2}
Whakawehe 300 ki te 2.
x^{2}+150x=3750
Whakawehe 7500 ki te 2.
x^{2}+150x+75^{2}=3750+75^{2}
Whakawehea te 150, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 75. Nā, tāpiria te pūrua o te 75 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+150x+5625=3750+5625
Pūrua 75.
x^{2}+150x+5625=9375
Tāpiri 3750 ki te 5625.
\left(x+75\right)^{2}=9375
Tauwehea x^{2}+150x+5625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+75\right)^{2}}=\sqrt{9375}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+75=25\sqrt{15} x+75=-25\sqrt{15}
Whakarūnātia.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
Me tango 75 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}