Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-5 ab=2\left(-18\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=4
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(2x^{2}-9x\right)+\left(4x-18\right)
Tuhia anō te 2x^{2}-5x-18 hei \left(2x^{2}-9x\right)+\left(4x-18\right).
x\left(2x-9\right)+2\left(2x-9\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(2x-9\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 2x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{9}{2} x=-2
Hei kimi otinga whārite, me whakaoti te 2x-9=0 me te x+2=0.
2x^{2}-5x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-18\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -5 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-18\right)}}{2\times 2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-18\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 2}
Whakareatia -8 ki te -18.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 2}
Tāpiri 25 ki te 144.
x=\frac{-\left(-5\right)±13}{2\times 2}
Tuhia te pūtakerua o te 169.
x=\frac{5±13}{2\times 2}
Ko te tauaro o -5 ko 5.
x=\frac{5±13}{4}
Whakareatia 2 ki te 2.
x=\frac{18}{4}
Nā, me whakaoti te whārite x=\frac{5±13}{4} ina he tāpiri te ±. Tāpiri 5 ki te 13.
x=\frac{9}{2}
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{8}{4}
Nā, me whakaoti te whārite x=\frac{5±13}{4} ina he tango te ±. Tango 13 mai i 5.
x=-2
Whakawehe -8 ki te 4.
x=\frac{9}{2} x=-2
Kua oti te whārite te whakatau.
2x^{2}-5x-18=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-5x-18-\left(-18\right)=-\left(-18\right)
Me tāpiri 18 ki ngā taha e rua o te whārite.
2x^{2}-5x=-\left(-18\right)
Mā te tango i te -18 i a ia ake anō ka toe ko te 0.
2x^{2}-5x=18
Tango -18 mai i 0.
\frac{2x^{2}-5x}{2}=\frac{18}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{5}{2}x=\frac{18}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{5}{2}x=9
Whakawehe 18 ki te 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=9+\left(-\frac{5}{4}\right)^{2}
Whakawehea te -\frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{4}. Nā, tāpiria te pūrua o te -\frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{2}x+\frac{25}{16}=9+\frac{25}{16}
Pūruatia -\frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{169}{16}
Tāpiri 9 ki te \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=\frac{169}{16}
Tauwehea x^{2}-\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{4}=\frac{13}{4} x-\frac{5}{4}=-\frac{13}{4}
Whakarūnātia.
x=\frac{9}{2} x=-2
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.