Whakaoti mō x (complex solution)
x=\frac{\sqrt{10}i}{2}+1\approx 1+1.58113883i
x=-\frac{\sqrt{10}i}{2}+1\approx 1-1.58113883i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-4x+7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 7}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me 7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 7}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 7}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16-56}}{2\times 2}
Whakareatia -8 ki te 7.
x=\frac{-\left(-4\right)±\sqrt{-40}}{2\times 2}
Tāpiri 16 ki te -56.
x=\frac{-\left(-4\right)±2\sqrt{10}i}{2\times 2}
Tuhia te pūtakerua o te -40.
x=\frac{4±2\sqrt{10}i}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±2\sqrt{10}i}{4}
Whakareatia 2 ki te 2.
x=\frac{4+2\sqrt{10}i}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{10}i}{4} ina he tāpiri te ±. Tāpiri 4 ki te 2i\sqrt{10}.
x=\frac{\sqrt{10}i}{2}+1
Whakawehe 4+2i\sqrt{10} ki te 4.
x=\frac{-2\sqrt{10}i+4}{4}
Nā, me whakaoti te whārite x=\frac{4±2\sqrt{10}i}{4} ina he tango te ±. Tango 2i\sqrt{10} mai i 4.
x=-\frac{\sqrt{10}i}{2}+1
Whakawehe 4-2i\sqrt{10} ki te 4.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
Kua oti te whārite te whakatau.
2x^{2}-4x+7=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-4x+7-7=-7
Me tango 7 mai i ngā taha e rua o te whārite.
2x^{2}-4x=-7
Mā te tango i te 7 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-4x}{2}=-\frac{7}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{7}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=-\frac{7}{2}
Whakawehe -4 ki te 2.
x^{2}-2x+1=-\frac{7}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=-\frac{5}{2}
Tāpiri -\frac{7}{2} ki te 1.
\left(x-1\right)^{2}=-\frac{5}{2}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{5}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{10}i}{2} x-1=-\frac{\sqrt{10}i}{2}
Whakarūnātia.
x=\frac{\sqrt{10}i}{2}+1 x=-\frac{\sqrt{10}i}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}