Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-3x-10x+3
Whakareatia te 5 ki te 2, ka 10.
2x^{2}-13x+3
Pahekotia te -3x me -10x, ka -13x.
factor(2x^{2}-3x-10x+3)
Whakareatia te 5 ki te 2, ka 10.
factor(2x^{2}-13x+3)
Pahekotia te -3x me -10x, ka -13x.
2x^{2}-13x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 3}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 3}}{2\times 2}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\times 3}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-13\right)±\sqrt{169-24}}{2\times 2}
Whakareatia -8 ki te 3.
x=\frac{-\left(-13\right)±\sqrt{145}}{2\times 2}
Tāpiri 169 ki te -24.
x=\frac{13±\sqrt{145}}{2\times 2}
Ko te tauaro o -13 ko 13.
x=\frac{13±\sqrt{145}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{145}+13}{4}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{145}}{4} ina he tāpiri te ±. Tāpiri 13 ki te \sqrt{145}.
x=\frac{13-\sqrt{145}}{4}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{145}}{4} ina he tango te ±. Tango \sqrt{145} mai i 13.
2x^{2}-13x+3=2\left(x-\frac{\sqrt{145}+13}{4}\right)\left(x-\frac{13-\sqrt{145}}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{13+\sqrt{145}}{4} mō te x_{1} me te \frac{13-\sqrt{145}}{4} mō te x_{2}.