Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-7x+3=0
Pahekotia te -3x me -4x, ka -7x.
a+b=-7 ab=2\times 3=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(2x^{2}-6x\right)+\left(-x+3\right)
Tuhia anō te 2x^{2}-7x+3 hei \left(2x^{2}-6x\right)+\left(-x+3\right).
2x\left(x-3\right)-\left(x-3\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te x-3=0 me te 2x-1=0.
2x^{2}-7x+3=0
Pahekotia te -3x me -4x, ka -7x.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\times 3}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -7 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\times 3}}{2\times 2}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\times 3}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\times 2}
Whakareatia -8 ki te 3.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\times 2}
Tāpiri 49 ki te -24.
x=\frac{-\left(-7\right)±5}{2\times 2}
Tuhia te pūtakerua o te 25.
x=\frac{7±5}{2\times 2}
Ko te tauaro o -7 ko 7.
x=\frac{7±5}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{7±5}{4} ina he tāpiri te ±. Tāpiri 7 ki te 5.
x=3
Whakawehe 12 ki te 4.
x=\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{7±5}{4} ina he tango te ±. Tango 5 mai i 7.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=3 x=\frac{1}{2}
Kua oti te whārite te whakatau.
2x^{2}-7x+3=0
Pahekotia te -3x me -4x, ka -7x.
2x^{2}-7x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{2x^{2}-7x}{2}=-\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{7}{2}x=-\frac{3}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Tāpiri -\frac{3}{2} ki te \frac{49}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{5}{4} x-\frac{7}{4}=-\frac{5}{4}
Whakarūnātia.
x=3 x=\frac{1}{2}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.