Whakaoti mō x
x = \frac{\sqrt{249} + 17}{2} \approx 16.389866919
x=\frac{17-\sqrt{249}}{2}\approx 0.610133081
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-34x+20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 20}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -34 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 20}}{2\times 2}
Pūrua -34.
x=\frac{-\left(-34\right)±\sqrt{1156-8\times 20}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-34\right)±\sqrt{1156-160}}{2\times 2}
Whakareatia -8 ki te 20.
x=\frac{-\left(-34\right)±\sqrt{996}}{2\times 2}
Tāpiri 1156 ki te -160.
x=\frac{-\left(-34\right)±2\sqrt{249}}{2\times 2}
Tuhia te pūtakerua o te 996.
x=\frac{34±2\sqrt{249}}{2\times 2}
Ko te tauaro o -34 ko 34.
x=\frac{34±2\sqrt{249}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{249}+34}{4}
Nā, me whakaoti te whārite x=\frac{34±2\sqrt{249}}{4} ina he tāpiri te ±. Tāpiri 34 ki te 2\sqrt{249}.
x=\frac{\sqrt{249}+17}{2}
Whakawehe 34+2\sqrt{249} ki te 4.
x=\frac{34-2\sqrt{249}}{4}
Nā, me whakaoti te whārite x=\frac{34±2\sqrt{249}}{4} ina he tango te ±. Tango 2\sqrt{249} mai i 34.
x=\frac{17-\sqrt{249}}{2}
Whakawehe 34-2\sqrt{249} ki te 4.
x=\frac{\sqrt{249}+17}{2} x=\frac{17-\sqrt{249}}{2}
Kua oti te whārite te whakatau.
2x^{2}-34x+20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-34x+20-20=-20
Me tango 20 mai i ngā taha e rua o te whārite.
2x^{2}-34x=-20
Mā te tango i te 20 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}-34x}{2}=-\frac{20}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{34}{2}\right)x=-\frac{20}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-17x=-\frac{20}{2}
Whakawehe -34 ki te 2.
x^{2}-17x=-10
Whakawehe -20 ki te 2.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-10+\left(-\frac{17}{2}\right)^{2}
Whakawehea te -17, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{2}. Nā, tāpiria te pūrua o te -\frac{17}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-17x+\frac{289}{4}=-10+\frac{289}{4}
Pūruatia -\frac{17}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-17x+\frac{289}{4}=\frac{249}{4}
Tāpiri -10 ki te \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{249}{4}
Tauwehea x^{2}-17x+\frac{289}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{2}=\frac{\sqrt{249}}{2} x-\frac{17}{2}=-\frac{\sqrt{249}}{2}
Whakarūnātia.
x=\frac{\sqrt{249}+17}{2} x=\frac{17-\sqrt{249}}{2}
Me tāpiri \frac{17}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}