Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-2x=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
2x^{2}-2x-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
2x^{2}-2x-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -2 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-1\right)}}{2\times 2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-2\right)±\sqrt{4+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-\left(-2\right)±\sqrt{12}}{2\times 2}
Tāpiri 4 ki te 8.
x=\frac{-\left(-2\right)±2\sqrt{3}}{2\times 2}
Tuhia te pūtakerua o te 12.
x=\frac{2±2\sqrt{3}}{2\times 2}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{3}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{3}+2}{4}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{4} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{3}.
x=\frac{\sqrt{3}+1}{2}
Whakawehe 2+2\sqrt{3} ki te 4.
x=\frac{2-2\sqrt{3}}{4}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{3}}{4} ina he tango te ±. Tango 2\sqrt{3} mai i 2.
x=\frac{1-\sqrt{3}}{2}
Whakawehe 2-2\sqrt{3} ki te 4.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
Kua oti te whārite te whakatau.
2x^{2}-2x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}-2x}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-x=\frac{1}{2}
Whakawehe -2 ki te 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{3}{4}
Tāpiri \frac{1}{2} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{3}}{2} x-\frac{1}{2}=-\frac{\sqrt{3}}{2}
Whakarūnātia.
x=\frac{\sqrt{3}+1}{2} x=\frac{1-\sqrt{3}}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.