Whakaoti mō x
x = \frac{\sqrt{157} + 7}{2} \approx 9.764982043
x=\frac{7-\sqrt{157}}{2}\approx -2.764982043
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-14x-54=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 2\left(-54\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -14 mō b, me -54 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 2\left(-54\right)}}{2\times 2}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-8\left(-54\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-14\right)±\sqrt{196+432}}{2\times 2}
Whakareatia -8 ki te -54.
x=\frac{-\left(-14\right)±\sqrt{628}}{2\times 2}
Tāpiri 196 ki te 432.
x=\frac{-\left(-14\right)±2\sqrt{157}}{2\times 2}
Tuhia te pūtakerua o te 628.
x=\frac{14±2\sqrt{157}}{2\times 2}
Ko te tauaro o -14 ko 14.
x=\frac{14±2\sqrt{157}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{157}+14}{4}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{157}}{4} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{157}.
x=\frac{\sqrt{157}+7}{2}
Whakawehe 14+2\sqrt{157} ki te 4.
x=\frac{14-2\sqrt{157}}{4}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{157}}{4} ina he tango te ±. Tango 2\sqrt{157} mai i 14.
x=\frac{7-\sqrt{157}}{2}
Whakawehe 14-2\sqrt{157} ki te 4.
x=\frac{\sqrt{157}+7}{2} x=\frac{7-\sqrt{157}}{2}
Kua oti te whārite te whakatau.
2x^{2}-14x-54=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}-14x-54-\left(-54\right)=-\left(-54\right)
Me tāpiri 54 ki ngā taha e rua o te whārite.
2x^{2}-14x=-\left(-54\right)
Mā te tango i te -54 i a ia ake anō ka toe ko te 0.
2x^{2}-14x=54
Tango -54 mai i 0.
\frac{2x^{2}-14x}{2}=\frac{54}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{14}{2}\right)x=\frac{54}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-7x=\frac{54}{2}
Whakawehe -14 ki te 2.
x^{2}-7x=27
Whakawehe 54 ki te 2.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=27+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=27+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{157}{4}
Tāpiri 27 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{157}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{157}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{\sqrt{157}}{2} x-\frac{7}{2}=-\frac{\sqrt{157}}{2}
Whakarūnātia.
x=\frac{\sqrt{157}+7}{2} x=\frac{7-\sqrt{157}}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}