Whakaoti mō x
x = \frac{\sqrt{79} + 9}{2} \approx 8.944097209
x=\frac{9-\sqrt{79}}{2}\approx 0.055902791
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-18x=-1
Tangohia te 18x mai i ngā taha e rua.
2x^{2}-18x+1=0
Me tāpiri te 1 ki ngā taha e rua.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -18 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2}}{2\times 2}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-18\right)±\sqrt{316}}{2\times 2}
Tāpiri 324 ki te -8.
x=\frac{-\left(-18\right)±2\sqrt{79}}{2\times 2}
Tuhia te pūtakerua o te 316.
x=\frac{18±2\sqrt{79}}{2\times 2}
Ko te tauaro o -18 ko 18.
x=\frac{18±2\sqrt{79}}{4}
Whakareatia 2 ki te 2.
x=\frac{2\sqrt{79}+18}{4}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{79}}{4} ina he tāpiri te ±. Tāpiri 18 ki te 2\sqrt{79}.
x=\frac{\sqrt{79}+9}{2}
Whakawehe 18+2\sqrt{79} ki te 4.
x=\frac{18-2\sqrt{79}}{4}
Nā, me whakaoti te whārite x=\frac{18±2\sqrt{79}}{4} ina he tango te ±. Tango 2\sqrt{79} mai i 18.
x=\frac{9-\sqrt{79}}{2}
Whakawehe 18-2\sqrt{79} ki te 4.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Kua oti te whārite te whakatau.
2x^{2}-18x=-1
Tangohia te 18x mai i ngā taha e rua.
\frac{2x^{2}-18x}{2}=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{18}{2}\right)x=-\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-9x=-\frac{1}{2}
Whakawehe -18 ki te 2.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-\frac{1}{2}+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-\frac{1}{2}+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=\frac{79}{4}
Tāpiri -\frac{1}{2} ki te \frac{81}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{9}{2}\right)^{2}=\frac{79}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{79}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{\sqrt{79}}{2} x-\frac{9}{2}=-\frac{\sqrt{79}}{2}
Whakarūnātia.
x=\frac{\sqrt{79}+9}{2} x=\frac{9-\sqrt{79}}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}