Whakaoti mō x
x = -\frac{33}{2} = -16\frac{1}{2} = -16.5
x=16
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=1 ab=2\left(-528\right)=-1056
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2x^{2}+ax+bx-528. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,1056 -2,528 -3,352 -4,264 -6,176 -8,132 -11,96 -12,88 -16,66 -22,48 -24,44 -32,33
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1056.
-1+1056=1055 -2+528=526 -3+352=349 -4+264=260 -6+176=170 -8+132=124 -11+96=85 -12+88=76 -16+66=50 -22+48=26 -24+44=20 -32+33=1
Tātaihia te tapeke mō ia takirua.
a=-32 b=33
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2x^{2}-32x\right)+\left(33x-528\right)
Tuhia anō te 2x^{2}+x-528 hei \left(2x^{2}-32x\right)+\left(33x-528\right).
2x\left(x-16\right)+33\left(x-16\right)
Tauwehea te 2x i te tuatahi me te 33 i te rōpū tuarua.
\left(x-16\right)\left(2x+33\right)
Whakatauwehea atu te kīanga pātahi x-16 mā te whakamahi i te āhuatanga tātai tohatoha.
x=16 x=-\frac{33}{2}
Hei kimi otinga whārite, me whakaoti te x-16=0 me te 2x+33=0.
2x^{2}+x-528=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-528\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -528 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-528\right)}}{2\times 2}
Pūrua 1.
x=\frac{-1±\sqrt{1-8\left(-528\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-1±\sqrt{1+4224}}{2\times 2}
Whakareatia -8 ki te -528.
x=\frac{-1±\sqrt{4225}}{2\times 2}
Tāpiri 1 ki te 4224.
x=\frac{-1±65}{2\times 2}
Tuhia te pūtakerua o te 4225.
x=\frac{-1±65}{4}
Whakareatia 2 ki te 2.
x=\frac{64}{4}
Nā, me whakaoti te whārite x=\frac{-1±65}{4} ina he tāpiri te ±. Tāpiri -1 ki te 65.
x=16
Whakawehe 64 ki te 4.
x=-\frac{66}{4}
Nā, me whakaoti te whārite x=\frac{-1±65}{4} ina he tango te ±. Tango 65 mai i -1.
x=-\frac{33}{2}
Whakahekea te hautanga \frac{-66}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=16 x=-\frac{33}{2}
Kua oti te whārite te whakatau.
2x^{2}+x-528=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+x-528-\left(-528\right)=-\left(-528\right)
Me tāpiri 528 ki ngā taha e rua o te whārite.
2x^{2}+x=-\left(-528\right)
Mā te tango i te -528 i a ia ake anō ka toe ko te 0.
2x^{2}+x=528
Tango -528 mai i 0.
\frac{2x^{2}+x}{2}=\frac{528}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{1}{2}x=\frac{528}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{1}{2}x=264
Whakawehe 528 ki te 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=264+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=264+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{4225}{16}
Tāpiri 264 ki te \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{4225}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{4225}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{65}{4} x+\frac{1}{4}=-\frac{65}{4}
Whakarūnātia.
x=16 x=-\frac{33}{2}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}