Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=9 ab=2\left(-5\right)=-10
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=-1 b=10
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(2x^{2}-x\right)+\left(10x-5\right)
Tuhia anō te 2x^{2}+9x-5 hei \left(2x^{2}-x\right)+\left(10x-5\right).
x\left(2x-1\right)+5\left(2x-1\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(2x-1\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}+9x-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 9.
x=\frac{-9±\sqrt{81-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-9±\sqrt{81+40}}{2\times 2}
Whakareatia -8 ki te -5.
x=\frac{-9±\sqrt{121}}{2\times 2}
Tāpiri 81 ki te 40.
x=\frac{-9±11}{2\times 2}
Tuhia te pūtakerua o te 121.
x=\frac{-9±11}{4}
Whakareatia 2 ki te 2.
x=\frac{2}{4}
Nā, me whakaoti te whārite x=\frac{-9±11}{4} ina he tāpiri te ±. Tāpiri -9 ki te 11.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{-9±11}{4} ina he tango te ±. Tango 11 mai i -9.
x=-5
Whakawehe -20 ki te 4.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te -5 mō te x_{2}.
2x^{2}+9x-5=2\left(x-\frac{1}{2}\right)\left(x+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}+9x-5=2\times \frac{2x-1}{2}\left(x+5\right)
Tango \frac{1}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}+9x-5=\left(2x-1\right)\left(x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.