Tauwehe
\left(2x-3\right)\left(x+5\right)
Aromātai
\left(2x-3\right)\left(x+5\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=2\left(-15\right)=-30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=10
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(2x^{2}-3x\right)+\left(10x-15\right)
Tuhia anō te 2x^{2}+7x-15 hei \left(2x^{2}-3x\right)+\left(10x-15\right).
x\left(2x-3\right)+5\left(2x-3\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(2x-3\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}+7x-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
Pūrua 7.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
Whakareatia -8 ki te -15.
x=\frac{-7±\sqrt{169}}{2\times 2}
Tāpiri 49 ki te 120.
x=\frac{-7±13}{2\times 2}
Tuhia te pūtakerua o te 169.
x=\frac{-7±13}{4}
Whakareatia 2 ki te 2.
x=\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-7±13}{4} ina he tāpiri te ±. Tāpiri -7 ki te 13.
x=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{20}{4}
Nā, me whakaoti te whārite x=\frac{-7±13}{4} ina he tango te ±. Tango 13 mai i -7.
x=-5
Whakawehe -20 ki te 4.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -5 mō te x_{2}.
2x^{2}+7x-15=2\left(x-\frac{3}{2}\right)\left(x+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}+7x-15=2\times \frac{2x-3}{2}\left(x+5\right)
Tango \frac{3}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}+7x-15=\left(2x-3\right)\left(x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}