Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+5x+29=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 29}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me 29 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\times 29}}{2\times 2}
Pūrua 5.
x=\frac{-5±\sqrt{25-8\times 29}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-5±\sqrt{25-232}}{2\times 2}
Whakareatia -8 ki te 29.
x=\frac{-5±\sqrt{-207}}{2\times 2}
Tāpiri 25 ki te -232.
x=\frac{-5±3\sqrt{23}i}{2\times 2}
Tuhia te pūtakerua o te -207.
x=\frac{-5±3\sqrt{23}i}{4}
Whakareatia 2 ki te 2.
x=\frac{-5+3\sqrt{23}i}{4}
Nā, me whakaoti te whārite x=\frac{-5±3\sqrt{23}i}{4} ina he tāpiri te ±. Tāpiri -5 ki te 3i\sqrt{23}.
x=\frac{-3\sqrt{23}i-5}{4}
Nā, me whakaoti te whārite x=\frac{-5±3\sqrt{23}i}{4} ina he tango te ±. Tango 3i\sqrt{23} mai i -5.
x=\frac{-5+3\sqrt{23}i}{4} x=\frac{-3\sqrt{23}i-5}{4}
Kua oti te whārite te whakatau.
2x^{2}+5x+29=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+5x+29-29=-29
Me tango 29 mai i ngā taha e rua o te whārite.
2x^{2}+5x=-29
Mā te tango i te 29 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+5x}{2}=-\frac{29}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{5}{2}x=-\frac{29}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-\frac{29}{2}+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{29}{2}+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{207}{16}
Tāpiri -\frac{29}{2} ki te \frac{25}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{4}\right)^{2}=-\frac{207}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{207}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{3\sqrt{23}i}{4} x+\frac{5}{4}=-\frac{3\sqrt{23}i}{4}
Whakarūnātia.
x=\frac{-5+3\sqrt{23}i}{4} x=\frac{-3\sqrt{23}i-5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.