Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(2x+4+2\right)=0
Tauwehea te x.
x=0 x=-3
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x+6=0.
2x^{2}+6x=0
Pahekotia te 4x me 2x, ka 6x.
x=\frac{-6±\sqrt{6^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 2}
Tuhia te pūtakerua o te 6^{2}.
x=\frac{-6±6}{4}
Whakareatia 2 ki te 2.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{-6±6}{4} ina he tāpiri te ±. Tāpiri -6 ki te 6.
x=0
Whakawehe 0 ki te 4.
x=-\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{-6±6}{4} ina he tango te ±. Tango 6 mai i -6.
x=-3
Whakawehe -12 ki te 4.
x=0 x=-3
Kua oti te whārite te whakatau.
2x^{2}+6x=0
Pahekotia te 4x me 2x, ka 6x.
\frac{2x^{2}+6x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{6}{2}x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+3x=\frac{0}{2}
Whakawehe 6 ki te 2.
x^{2}+3x=0
Whakawehe 0 ki te 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=0 x=-3
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.