Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x+1=0
Whakawehea ngā taha e rua ki te 2.
a+b=2 ab=1\times 1=1
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x^{2}+x\right)+\left(x+1\right)
Tuhia anō te x^{2}+2x+1 hei \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Whakatauwehea atu x i te x^{2}+x.
\left(x+1\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-1
Hei kimi i te otinga whārite, whakaotia te x+1=0.
2x^{2}+4x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 4 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\times 2}}{2\times 2}
Pūrua 4.
x=\frac{-4±\sqrt{16-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-4±\sqrt{16-16}}{2\times 2}
Whakareatia -8 ki te 2.
x=\frac{-4±\sqrt{0}}{2\times 2}
Tāpiri 16 ki te -16.
x=-\frac{4}{2\times 2}
Tuhia te pūtakerua o te 0.
x=-\frac{4}{4}
Whakareatia 2 ki te 2.
x=-1
Whakawehe -4 ki te 4.
2x^{2}+4x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2x^{2}+4x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
2x^{2}+4x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{2x^{2}+4x}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{4}{2}x=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+2x=-\frac{2}{2}
Whakawehe 4 ki te 2.
x^{2}+2x=-1
Whakawehe -2 ki te 2.
x^{2}+2x+1^{2}=-1+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-1+1
Pūrua 1.
x^{2}+2x+1=0
Tāpiri -1 ki te 1.
\left(x+1\right)^{2}=0
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=0 x+1=0
Whakarūnātia.
x=-1 x=-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=-1
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}