Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}=6-32
Tangohia te 32 mai i ngā taha e rua.
2x^{2}=-26
Tangohia te 32 i te 6, ka -26.
x^{2}=\frac{-26}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-13
Whakawehea te -26 ki te 2, kia riro ko -13.
x=\sqrt{13}i x=-\sqrt{13}i
Kua oti te whārite te whakatau.
2x^{2}+32-6=0
Tangohia te 6 mai i ngā taha e rua.
2x^{2}+26=0
Tangohia te 6 i te 32, ka 26.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 26}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 26}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 26}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-208}}{2\times 2}
Whakareatia -8 ki te 26.
x=\frac{0±4\sqrt{13}i}{2\times 2}
Tuhia te pūtakerua o te -208.
x=\frac{0±4\sqrt{13}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{13}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{13}i}{4} ina he tāpiri te ±.
x=-\sqrt{13}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{13}i}{4} ina he tango te ±.
x=\sqrt{13}i x=-\sqrt{13}i
Kua oti te whārite te whakatau.