Whakaoti mō x (complex solution)
x=-\sqrt{13}i\approx -0-3.605551275i
x=\sqrt{13}i\approx 3.605551275i
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}=6-32
Tangohia te 32 mai i ngā taha e rua.
2x^{2}=-26
Tangohia te 32 i te 6, ka -26.
x^{2}=\frac{-26}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=-13
Whakawehea te -26 ki te 2, kia riro ko -13.
x=\sqrt{13}i x=-\sqrt{13}i
Kua oti te whārite te whakatau.
2x^{2}+32-6=0
Tangohia te 6 mai i ngā taha e rua.
2x^{2}+26=0
Tangohia te 6 i te 32, ka 26.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 26}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 26}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\times 26}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{-208}}{2\times 2}
Whakareatia -8 ki te 26.
x=\frac{0±4\sqrt{13}i}{2\times 2}
Tuhia te pūtakerua o te -208.
x=\frac{0±4\sqrt{13}i}{4}
Whakareatia 2 ki te 2.
x=\sqrt{13}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{13}i}{4} ina he tāpiri te ±.
x=-\sqrt{13}i
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{13}i}{4} ina he tango te ±.
x=\sqrt{13}i x=-\sqrt{13}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}