Whakaoti mō y
y=8+6x-x^{2}
Whakaoti mō x (complex solution)
x=\sqrt{17-y}+3
x=-\sqrt{17-y}+3
Whakaoti mō x
x=\sqrt{17-y}+3
x=-\sqrt{17-y}+3\text{, }y\leq 17
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-12x+8=24-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua.
2y+8=24-2x^{2}+12x
Me tāpiri te 12x ki ngā taha e rua.
2y=24-2x^{2}+12x-8
Tangohia te 8 mai i ngā taha e rua.
2y=16-2x^{2}+12x
Tangohia te 8 i te 24, ka 16.
2y=16+12x-2x^{2}
He hanga arowhānui tō te whārite.
\frac{2y}{2}=\frac{16+12x-2x^{2}}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{16+12x-2x^{2}}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y=8+6x-x^{2}
Whakawehe 16-2x^{2}+12x ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}